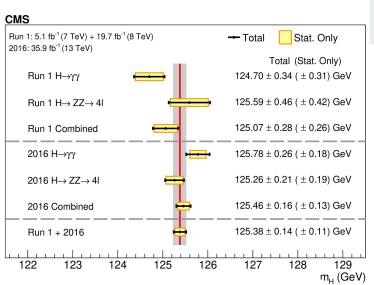
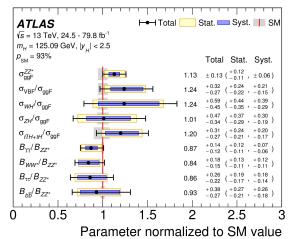
Exotic Higgs Decay at ATLAS and CMS

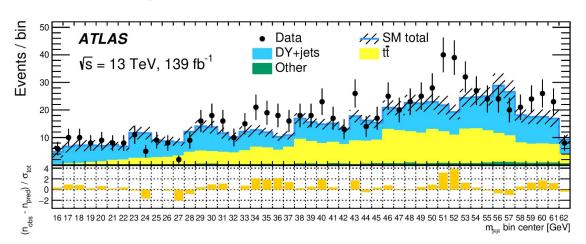
Kin Ho Lo, on behalf of ATLAS and CMS Brookhaven Forum 2021

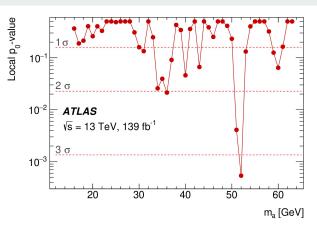

Introduction

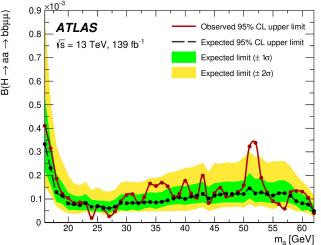

- Does the Higgs boson behave as we expect?
 - Higgs Boson properties (cross section, mass, width,...)
 - Exotic Higgs sector
 - Higgs boson decay (SM or Exotic)

- Focus on selected set of latest results with exotic, prompt decays of the 125 GeV boson
 - \circ H \rightarrow aa \rightarrow 4v
 - H → invisible
 - \circ H \rightarrow invisible (VBF)

CMS ATLAS Both

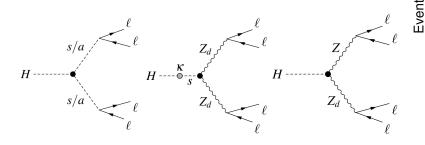

- $\circ \quad \mathsf{H} \to \mathsf{aa} \to \mathsf{bb} \mathsf{\mu} \mathsf{\mu}$
- \circ ZH \rightarrow bb + invisible
- \circ ZH \rightarrow II + invisible
- \circ H \rightarrow 41
- H →lepton flavor violation

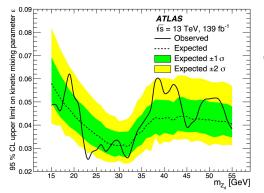




$H \rightarrow aa \rightarrow bb\mu\mu$

- Good branching fraction from a \rightarrow bb, clean signatures from a $\rightarrow \mu\mu$
- Boosted decision tree used to improve signal background discrimination for high m_a
- At $m_a \sim 52$ GeV, local (global) significance of 3.3σ (1.7σ)
- Kinematic likelihood (KL) fit to rescale b-jets such that $m_{hh} = m_{II}$
- Corresponding CMS result at 35 fb⁻¹

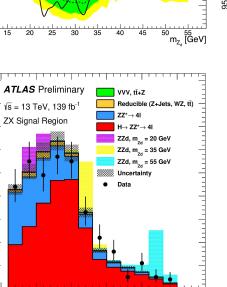




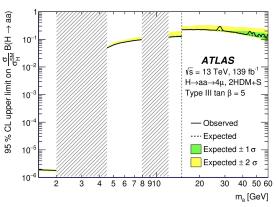
$H \rightarrow ZX/XX \rightarrow 4l$

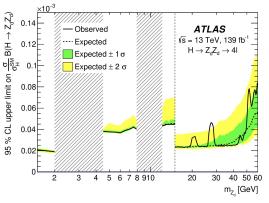
- Consider X as dark photon Z_d, dark Higgs s or pseudo-scalar a
- Different strategy for ZX and XX topology
- Report exclusion on cross section, branching fractions and dark photon model parameters
- Corresponding CMS result at 139 fb⁻¹

ZX Signal Region

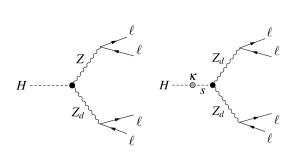

20

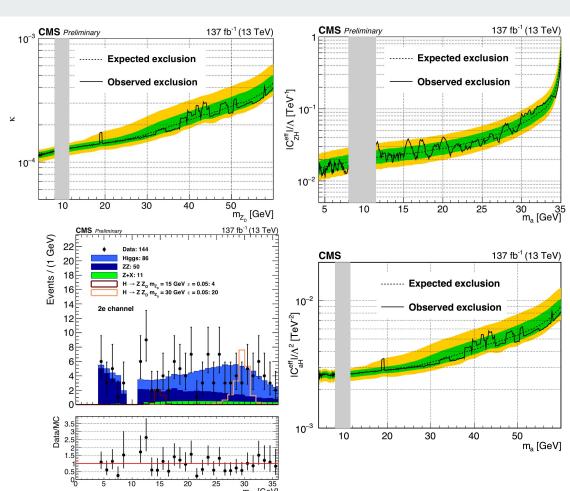
30


50


40 ⊦

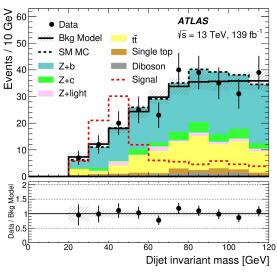
30 20 E 10 ⊨

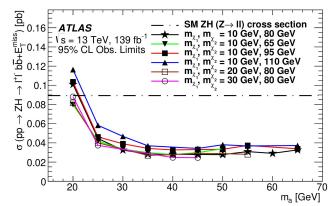

) 60 m₃₄ [GeV]



$H \to ZX/XX \to 4l$

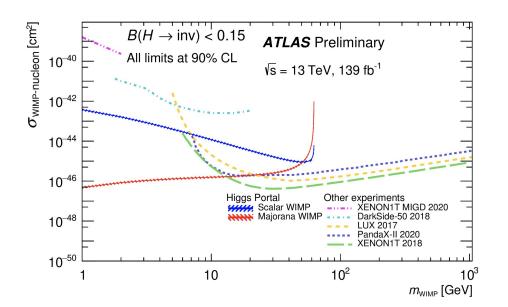
- CMS result consider dark photon and axion-like particle model
- Exclude specific model parameters such as dark Higgs coupling, Wilson coefficients

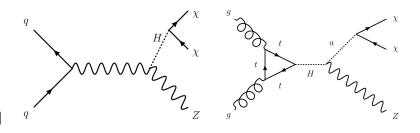


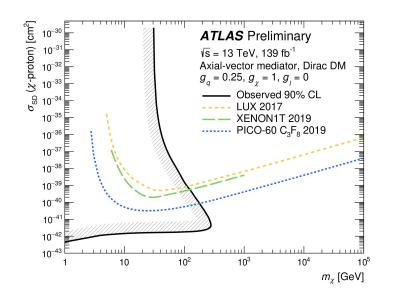

ATLAS

ZH → bb + invisible

- ZH production in an NMSSM scenario, $H \rightarrow \tilde{\chi}_{20} \tilde{\chi}_{10}$, with $\tilde{\chi}_{20} \rightarrow a \tilde{\chi}_{10}$
- Near the PQ symmetry limit of the NMSSM, this decay channel dominates over H→ aa
- Analysis strategy
 - Perform search in a \rightarrow bb invariant mass distribution
 - Three-dimensional scan (a, $\tilde{\chi}_{20}$, $\tilde{\chi}_{10}$) mass

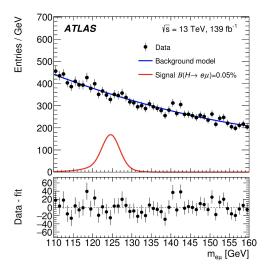

	SR	CRZ	CRTop	VRMET
Number of leptons			2	
Number of jets			≥ 2	
Number of b -tagged jets			≥ 1	
Dilepton $p_{\rm T}$ [GeV]			> 40	
p_{T} fraction			[0.8, 1.2]	
Dilepton mass [GeV]	[81, 101]	[81, 101]	[50, 81] or > 101	[81, 101]
$E_{\mathrm{T}}^{\mathrm{miss}} \; [\mathrm{GeV}]$	> 100	[60, 100]	> 100	> 50
Dijet mass [GeV]	[20, 120]	[20, 120]	[20, 120]	> 150

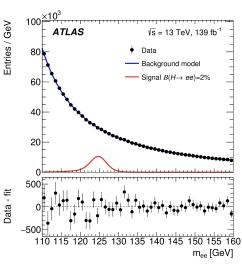




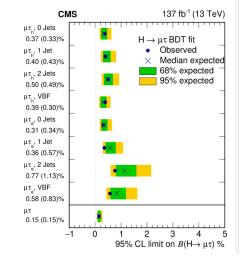
ZH → ll + invisible

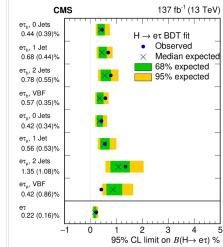
- Higgs decay to dark matter with associated Z boson production
- Exclusion limits on simplified dark matter, 2HDM+a models, and WIMP-nucleon cross section

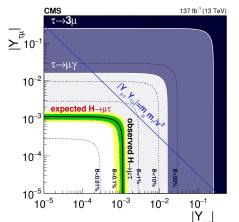


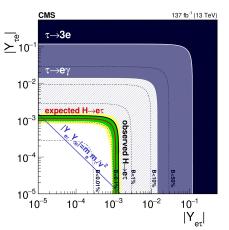


Lepton flavor violation

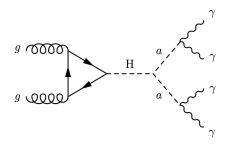

- H → ee
 - Branching fraction still far below the sensitivity of the LHC experiment
 - Exclude branching fraction B(H \rightarrow ee) ~ 10⁻⁴
- $H \rightarrow e\mu$
 - o complements LFV constraints from $\mu \rightarrow e \gamma$ or electric dipole moment measurement of electron
 - Exclude branching fraction B(H \rightarrow e μ) ~ 10⁻⁵
- Analytic fits to dilepton invariant mass distributions
- Improvements by factors of about five and six on the previous best limits

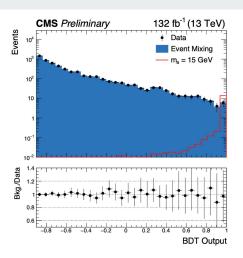


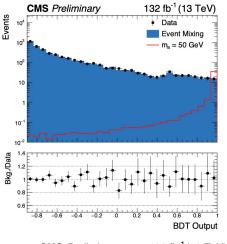


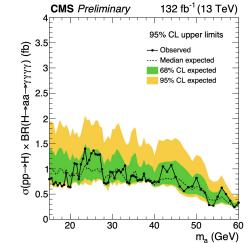

Lepton flavor violation

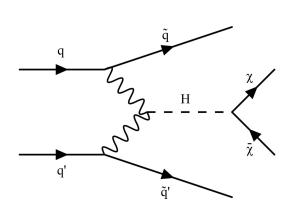
- Complements sensitivities provided by:
 - Search for rare τ decay
 - Measurement of electron and muon magnetic moment
- H → µT
 - Exclude branching fraction B(H \rightarrow μτ) ~ 0.15%
- H → eT
 - Exclude branching fraction B(H \rightarrow eT) ~ 0.22%
- Boosted decision tree for signal and background discrimination
- Also reported limits on LFV Yukawa couplings

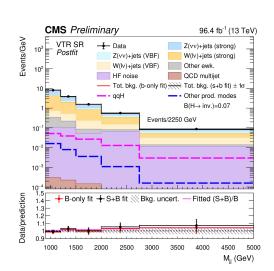


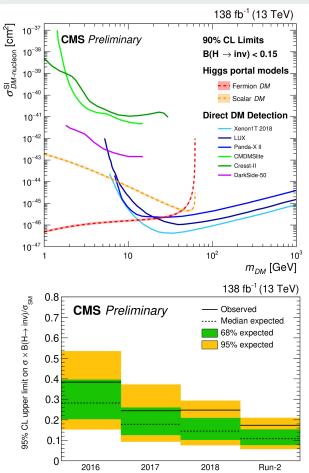



$H \rightarrow aa \rightarrow 4\gamma$

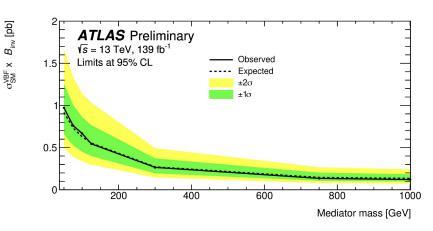

- Model independent analysis focus on final state with fully resolved photons
 - Full reconstructed photon separately
- Analysis strategy
 - Signature selection
 - 15 < m₃ < 60 GeV
 - 110 < m_{vvvv} < 180 GeV
 - Data-driven background estimation
 - MVA classifier distinguish signal from γγγγ background
- Corresponding ATLAS results at Run 1

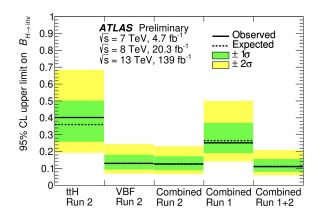

		Min. BDT	Signal efficiency
	m_a	output value	with respect to selection on BDT
	15	0.883	0.884
	20	0.891	0.867
	25	0.876	0.857
	30	0.897	0.840
	35	0.931	0.815
	40	0.945	0.780
	45	0.952	0.801
	50	0.958	0.805
	55	0.976	0.773
	60	0.987	0.714

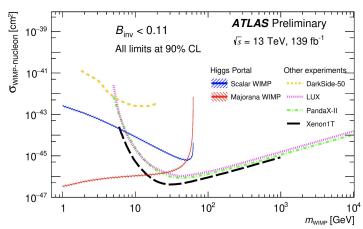


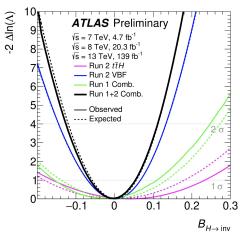


$H \rightarrow invisible (VBF)$

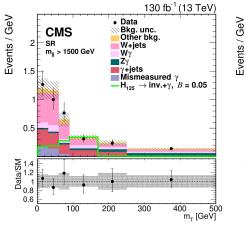

- Various BSM models predicts much higher Br(H \rightarrow inv) than SM (~0.1%)
- Higgs boson as a mediator for SM particles and dark matter
- High production cross section and distinctive signal topology
- Corresponding ATLAS result at 139 fb⁻¹

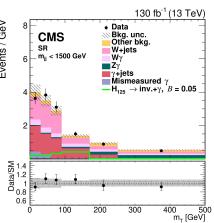


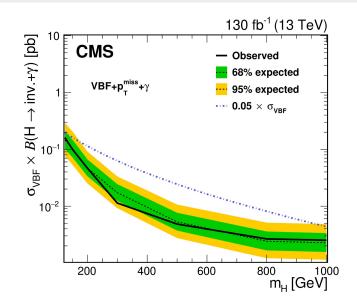


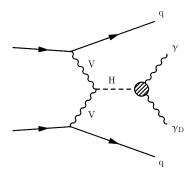


- Similar results from ATLAS includes combination and VBF channel
- Constrain invisible branching fraction < 0.11
- Results also interpreted as exclusion on dark matter models with Higgs as portal








$H \rightarrow invisible + \gamma$

- $H \rightarrow \gamma \gamma_D$ where γ_D is a massless dark photon
- B(H \rightarrow inv + y) could be as large as 5%
- A model-independent search for VBF production is performed for neutral Higgs bosons with masses between 125 and 1000 GeV, and plus ZH for H125
- Signal signature: two jets + γ + MET

Conclusion

- ATLAS and CMS has gained significant progress in understanding various properties of Higgs boson, such as its exotic decays
- The most stringent constraints on various channel generally come from full Run II datasets, thanks to:
 - Increased data statistics
 - Improved detector reconstruction
 - More advanced analysis methods
- Selected set of results in this talk:
 - \circ H \rightarrow aa \rightarrow 4y
 - \circ H \rightarrow invisible
 - \circ H \rightarrow invisible (VBF)
 - H → aa → bbμμ
 - \circ ZH \rightarrow bb + invisible
 - \circ H \rightarrow 41
 - O H →lepton flavor violation
- More interesting results are coming out with full Run II data Stay tuned!
- In a longer term, we will achieve higher sensitivity with large data sets in Run III and beyond